66,296 research outputs found

    An unification of general theory of relativity with Dirac's large number hypothesis

    Full text link
    Taking a hint from Dirac's large number hypothesis, we note the existence of cosmologically combined conservation laws that work to cosmologically long time. We thus modify Einstein's theory of general relativity with fixed gravitation constant GG to a theory for varying GG, with a tensor term arising naturally from the derivatives of GG in place of the cosmological constant term usually introduced \textit{ad hoc}. The modified theory, when applied to cosmology, is consistent with Dirac's large number hypothesis, and gives a theoretical Hubble's relation not contradicting the observational data. For phenomena of duration and distance short compared with that of the universe, our theory reduces to Einstein's theory with GG being constant outside the gravitating matter, and thus also passes the crucial tests of Einstein's theory.Comment: 9 pages, 1 figur

    Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain

    Full text link
    Electronic structures of wurtzite GaAs nanowires in the [0001] direction were studied using first-principles calculations. It was found that the band gap of GaAs nanowires experience a direct-to-indirect transition when the diameter of the nanowires is smaller than ~28 {\AA}. For those thin GaAs nanowires with an indirect band gap, it was found that the gap can be tuned to be direct if a moderate external uniaxial strain is applied. Both tensile and compressive strain can trigger the indirect-to-direct gap transition. The critical strains for the gap-transition are determined by the energy crossover of two states in conduction bands.Comment: 4 pages, 4 figure

    Space-Based Gravity Detector for a Space Laboratory

    Get PDF
    A space-based superconducting gravitational low-frequency wave detector is considered. Sensitivity of the detector is sufficient to use the detector as a partner of other contemporary low-frequency detectors like LIGO and LISA. This device can also be very useful for experimental study of other effects predicted by theories of gravitation.Comment: 4 pages, 4 figures

    Full electrical control of Charge and Spin conductance through Interferometry of Edge States in Topological Insulators

    Full text link
    We investigate electron interferometry of edge states in Topological Insulators. We show that, when inter-boundary coupling is induced at two quantum point contacts of a four terminal setup, both Fabry-P\'erot-like and Aharonov-Bohm-like loop processes arise. These underlying interference effects lead to a full electrically controllable system, where the magnitude of charge and spin linear conductances can be tuned by gate voltages, without applying magnetic fields. In particular we find that, under appropriate conditions, inter-boundary coupling can lead to negative values of the conductance. Furthermore, the setup also allows to selectively generate pure charge or pure spin currents, by choosing the voltage bias configuration.Comment: 12 pages, 5 figures (expanded discussion section, corrected typos

    Wormhole Effect in a Strong Topological Insulator

    Full text link
    An infinitely thin solenoid carrying magnetic flux Phi (a `Dirac string') inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Phi=hc/2e. These modes are spin-filtered and represent a distinct bulk manifestation of the topologically non-trivial insulator. We establish this `wormhole' effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.Comment: 4 pages, 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Field-effect mobility enhanced by tuning the Fermi level into the band gap of Bi2Se3

    Full text link
    By eliminating normal fabrication processes, we preserve the bulk insulating state of calcium-doped Bi2Se3 single crystals in suspended nanodevices, as indicated by the activated temperature dependence of the resistivity at low temperatures. We perform low-energy electron beam irradiation (<16 keV) and electrostatic gating to control the carrier density and therefore the Fermi level position in the nanodevices. In slightly p-doped Bi2-xCaxSe3 devices, continuous tuning of the Fermi level from the bulk valence band to the band-gap reveals dramatic enhancement (> a factor of 10) in the field-effect mobility, which suggests suppressed backscattering expected for the Dirac fermion surface states in the gap of topological insulators
    • …
    corecore